Group foliation of differential equations using moving frames

نویسندگان

  • Robert Thompson
  • Francis Valiquette
چکیده

We incorporate the new theory of equivariant moving frames for Lie pseudo-groups into Vessiot’s method of group foliation of differential equations. The automorphic system is replaced by a set of reconstruction equations on the pseudo-group jets. The result is a completely algorithmic and symbolic procedure for finding both invariant and non-invariant solutions of differential equations admitting a symmetry group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recursive Moving Frames for Lie Pseudo-Groups

This paper introduces a new, fully recursive algorithm for computing moving frames and differential invariants of Lie pseudo-group actions. The recursive method avoids unwieldy symbolic expressions that complicate the treatment of large scale applications of the equivariant moving frame method. The development leads to novel results on partial moving frames, structure equations, and new differe...

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

Group Foliation of Euler Equations in Nonstationary Rotationally Symmetrical Case

Euler equations for rotationally symmetrical motions of ideal fluid are considered. Basis of differential invariants for infinite-dimensional part of admitted group is calculated. The basis is used for construction of group foliation of Euler equations. Both automorphic and resolving systems are completed to involution. The resolving part of group foliation inherits finite-dimensional part of g...

متن کامل

Moving Frames and Singularities of Prolonged Group Actions

The prolongation of a transformation group to jet bundles forms the geometric foundation underlying Lie’s theory of symmetry groups of differential equations, the theory of differential invariants, and the Cartan theory of moving frames. Recent developments in the moving frame theory have necessitated a detailed understanding of the geometry of prolonged transformation groups. This paper begins...

متن کامل

Moving Coframes. I. A Practical Algorithm

This is the first in a series of papers devoted to the development and applications of a new general theory of moving frames. In this paper, we formulate a practical and easy to implement explicit method to compute moving frames, invariant differential forms, differential invariants and invariant differential operators, and solve general equivalence problems for both finite-dimensional Lie grou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015